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Senior Structured Finance Obligations

Are Not Economic Catastrophe Bonds

Abstract

Senior structured finance obligations are backed by an asset pool and suffer

losses only after subordinate tranches have been completely exhausted. For a

given rating and fixed asset beta, the more diversified the asset pool, the higher

is the price of the most senior tranche. Such bonds resemble government bonds

which default only in the worst economic states. Bonds that fail only in the

same states as the government bond must have the same default risk, the same

systematic risk and the same price. But government bonds are close substitutes

for the risk-less asset and not economic catastrophe bonds.
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I. Introduction

Collateralized Debt Obligations (CDOs) were at the heart of the 2007–2008 financial

market crisis. The CDO is the prototypical structured finance security and is a type of

structured asset-backed security (ABS). A CDO is basically a promise to pay investors in

a predefined sequence, based on the cash flows the CDO collects from the underlying pool

of assets. The CDO is “sliced” into “tranches”, each CDO tranche receives the cash flow

of interest and principal in sequence based on its priority. Jones (2008), in an article in

FT Alphaville, considers structured finance to be “the single most important invention in

finance, if not economics, in the past few decades.” Indeed, structured finance can improve

the efficiency of resource allocation in an economy to allow for better risk sharing and

help contain systemic risk by freeing up the banks’ balance sheets. In addition, investing

into ABSs could be a powerful tool for central banks to increase the money supply and to

stimulate credit markets. However, to reach these key goals requires first and foremost a

proper understanding of the inherent economic risks of structured ABSs. I will present a

model to establish a link between credit rating and price for different size and beta of the

underlying asset pool as alternative to the model of Coval, Jurek, and Stafford (2009a).

The oft-cited paper of Coval, Jurek, and Stafford (2009a) in the American Economic

Review investigates the risk and pricing implications of structured finance activities. They

make the case that “losses on the most senior tranches [...] are largely confined to the

worst economic states, suggesting that they should trade at significantly higher yield spreads

than single-name bonds with identical credit ratings” (p. 630). According to Coval et al.

such “economic catastrophe bonds should offer a large risk premium to compensate for their

systematic risk” (p. 628). They further argue that “creating large diversified portfolios of

economic assets (e.g., corporate bonds) and issuing prioritized capital structures of claims
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against those pools, as is common in structured finance, emerges as a natural approach to

manufacturing the cheapest security within a given credit rating category” (p. 657).

However, is a sovereign bond backed by the (taxable) assets of an economy not the natural

equivalent of a senior structured finance obligation? Are senior CDO tranches not meant to

replicate US treasuries to meet the demand for highly rated bonds? Should a sovereign bond

based on a large and well diversified economy (such as the USA) really be cheaper than the

sovereign bond based on a specialized economy (such as Saudia Arabia), ceteris paribus (i.a.,

the same default likelihood and the same CAPM beta of their portfolios of economic assets)?

If we think this through it would mean that the sovereign bond, which represents a senior

CDO tranche backed by taxable collateral, must be cheaper than the bond of a corporation,

which represents a very specialized economy (again under the assumption that both have

the same rating and asset beta). In my humble view, the hypotheses of Coval, Jurek, and

Stafford (2009a) fly in the face of logic: In the worst economic states even “safe haven”

securities such as Germany’s triple-A rated government bonds default. Securities that fail

only under the same severe economic conditions as the government bond must also have

the same default risk, the same systematic risk and therefore exactly the same price. But

government bonds are usually considered a proxy for the risk-free asset and not economic

catastrophe bonds. I will provide a rigorous proof.

The beta according to the “Nobel prize-winning” capital asset pricing model (CAPM) of

Treynor (1962), Sharpe (1964), Lintner (1965), and Mossin (1966) derived from the mean-

variance criterion of Markowitz (1952) reflects the systematic risk of an asset with respect to

the market portfolio. The implication of the CAPM is that the covariation between individual

asset returns and the market return defines the systematic risk and therefore matters for

pricing. The remaining risk is assumed to be idiosyncratic, can be diversified away and
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commands no premium. It must be noted that covariance is a linear risk measure and of

limited suitability for measuring dependence (see, e.g., Embrechts, McNeil, and Straumann

(1999)). Nonetheless, in this paper I focus on covariance risk and I neglect higher co-

moments to make a straightforward and transparent comparison with Coval, Jurek, and

Stafford (2009a) who “develop a simple state-contingent pricing framework [i]n the spirit

of the William F. Sharpe (1964) and John Lintner (1965) CAPM” (p. 629). However,

the pivotal conclusion in this paper remains true for more complex models with non-linear

dependencies.1

Given the same default likelihood (and therefore the same credit rating) and the same

asset beta of the collateral pool, I will demonstrate that senior bonds based on a more

diversified asset pool must trade, everything else equal, at a lower not higher yield spread

compared to a less diversified collateral pool. Both the expected loss given default and the

beta per unit at risk decrease with a more diversified collateral pool. Since the asset beta of

the collateral pool and the default risk of each tranche are held constant by construction and

because the beta of senior debt decreases due to diversification, the beta of the subordinated

tranches must necessarily increase. That is, the systematic risk of senior debt falls whereas

the systematic risk of the leveraged tranches rise. By diversifying the asset pool, senior

tranches can be regarded as a continuous bridgeover between single-name bond with large

systematic risk and risk-less asset. Furthermore, for any given transaction structure, the

systematic risk of equity is higher than the beta of mezzanine which is in turn higher than

the beta of senior debt. Thus, junior not senior tranches are economic catastrophe bonds! To

1Blöchlinger (2015) demonstrates that typical credit instruments show significant coskewness and cokur-

tosis risk which must be priced under the concept of standard risk aversion according to Kimball (1993).

Covariance, coskewness and cokurtosis of senior debt in a CDO transaction all decrease with a more diver-

sified asset pool resulting in a higher 4-moment CAPM price for the most senior tranche.
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summarize, I will demonstrate that leverage and not diversification drives systematic risk.

I will focus exclusively on the theoretical model of Coval, Jurek, and Stafford (2009a),

but I will remain silent on the empirical part of Coval et al. The models of Collin-Dufresne,

Goldstein, and Yang (2012), Li and Zhao (2012) already offer a convincing resolution to the

empirical puzzle reported by Coval et al. I will proceed as follows: Section II establishes

an economic setting in the spirit of Coval, Jurek, and Stafford (2009a). Section III defines

default risk, credit rating and systematic risk to avoid any ambiguity and to comply fully

with current rating practice. Section IV derives the CAPM prices of equity, mezzanine

and senior tranches and shows how these prices change with a more diversified collateral

pool. Section V discusses the crucial differences to Coval, Jurek, and Stafford (2009a) and

demonstrates that the most senior CDO tranche can be structured to be a close substitute

for the risk-free bond. Section VI concludes.

II. The Economic Setting

The structuring of collateralized debt obligations (CDOs) proceeds in two basic steps. In

the first step, a number of assets (e.g., mortgages, loans, bonds, CDSs) are pooled in a special

purpose entity. In the second step, the cash flows of the underlying assets are redistributed,

or tranched, across a series of financial derivatives. The priority observed in redistributing

cash flows among the derivative securities, called tranches, allows some of them to have lower

other higher expected payoffs than the mean cash flow of the underlying asset pool. I will

consider a homogenous pool of K assets, each asset with a notional value of one.2 The asset

pool can also be interpreted as the market portfolio of economic assets of an economy.

2I will remain silent about the unit. But the unit can be thought of a US dollar, a Swiss franc, a good

like a potato, or a representative basket of goods and services.
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I have a one-period economy with the probability triple (Ω,F ,P) and I want to charac-

terize CDO prices with different priorities/seniorities – equity, mezzanine, and senior debt

– derived from an underlying asset pool consisting of a subset of assets from the market

portfolio. The probability distribution of the K end-of-period cash-flows {Y1, ..., YK} are

assumed to be given by a multivariate Gaussian distribution:
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with 0 < ρ < 1 and 0 < µ < 1. I assume that 0 < µ < 1 since I interpret each asset with

an underlying notional amount of one. The expected payoff µ is smaller than the promised

end-of-period notional amount due to credit risk but greater than zero. Further, I define the

portfolio Pn with n underlying assets, 1 ≤ n ≤ K, and the market portfolio M consisting of

all K assets:

Pn =
1

n

n∑

i=1

Yi, and M =
1

K

K∑

k=1

Yk,

so that Pn andM have both an (averaged) notional amount of one. By linear transformation,

the end-of-period payoffs follow a bivariate Gaussian distribution:
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σ2
M =

1

K
σ2 +

K − 1

K
ρσ2, and σ2

Pn
=

1

n
σ2 +

n− 1

n
ρσ2, with σM ≤ σPn

< σPn−1
.

The correlation coefficient between Pn and M is therefore given by σM/σPn
and for an

increasing number of assets K (n) the variance of M (Pn) tends towards ρ σ2. The linear
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projection coefficient β by projecting Pn onto M is equal to one:

(Pn − µ) = β (M − µM) + ε, where COV [ε,M ] = 0 and ε ∼ N
(
0, σ2

Pn
− β2σ2

M

)
,

since β = COV [Pn,M ] /σ2
M = 1 for any n ∈ {1, ..., K}. The projection coefficient β is the

asset beta and is relevant for pricing in a CAPM framework:

Proposition 1 (Two-moment CAPM pricing): The CAPM price qX of a financial

derivative with F-measurable random payoff X is given by:

qX
q0

= µX − βXλ, (2)

where µX = E [X ], βX = COV [X,M ] /V [M ] with M = 1/K
∑K

k=1 Yk, λ > 0 is the market

premium for covariance risk and q0 is the price of the risk-free bond with a non-random

end-of-period payoff Y0 expressed as a fraction of the notional value.

The proofs can be found in the Appendix. Equation (2) is called a two-moment CAPM

since only two statistical moments of X , namely mean µX and scaled variance contribution

βX , are pricing relevant. The payoff X is a financial derivative in the sense that X does not

change the payoff of the market portfolio M . The physical risk statistics µX and βX of X are

independent from any preference assumptions, λ, however, is the market price of risk and

depends on risk aversion. If X is the payoff of a credit derivative then the rating information

alone is insufficient for pricing since the rating is silent on βX . Due to the assumption of

identically distributed payoffs in (1), the CAPM price qP of the portfolio Pn is given by:

qP
q0

= µ− βλ.

That is, the price qP does not depend on the number of underlying assets n. Note, qP is

expressed as a fraction of the notional value of the underlying assets, and that is the way I

am going to express prices – always as a fraction of the underlying notional. This convention

gives me comparable risk statistics per unit invested or per unit at risk, respectively.
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III. Definition of Default Risk and Systematic Risk

As in Coval, Jurek, and Stafford (2009a), I am “considering a series of tranches with a

fixed unconditional probability of default” (p. 661). This assumption is not restrictive: I will

show that an equivalent assumption is to keep the expected loss rates constant except for the

most junior and the most senior tranche. Since the most junior tranche is usually unrated

and the most senior tranche typically triple-A rated, it is therefore almost irrelevant from

an information content perspective whether credit ratings for CDO tranches are interpreted

as ordinal assessments about expected loss rates (Moody’s) or about default probabilities

(S&P, Fitch).

There is a broad consistency and uniformity across the financial industry that default is

characterized as a “missed payment” as noted by the International Swaps and Derivatives

Association (ISDA). This well established definition of a default event is crucial for the

interpretation of credit ratings. As a consequence, to be fully consistent with best rating

practice and current literature, default risk is best quantified by the probability of default

as proposed by Coval, Jurek, and Stafford (2009a):

Definition 1 (Default risk): Two assets have the same default risk if and only if they

have the same probability of full repayment of principal amount and interest.

A credit rating is an ordinal assessment about default risk. Thus, I also introduce the

following almost redundant definition to make the purpose of credit ratings crystal clear:

Definition 2 (Credit rating): Two assets have the same credit rating if and only if they

have the same default risk.

A reader of this paper has suggested to invest into a well diversified corporate bond

portfolio instead of a single senior CDO tranche. Assuming that both assets have the same
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expected loss rate and that corporate defaults are not perfectly correlated, i.e., ρ < 1, then

the corporate bond portfolio can have the lower variance (as well as the lower CAPM beta)

and is therefore less risky from a mean-variance perspective than the senior CDO tranche.

However, due to diversification the probability of at least one default event and therefore the

chance of a “missed payment” in the bond portfolio tends to one. The credit rating of the

whole corporate bond portfolio must then be extremely low even though the rating of each

single-name bond in the portfolio could be high. Hence, two assets with the same expected

loss rate do not in general have the same credit rating.

Since I work with Gaussian distributed cash flows in (1), the systematic risk can be

completely quantified by the CAPM beta in the spirit of Sharpe (1964):

Definition 3 (Systematic risk): Two assets have the same systematic risk if and only

if they have the same CAPM beta.

Having defined default risk, credit rating and systematic risk in the most standard way

to avoid any ambiguity and to comply with best practice, I can continue with structuring

credit derivatives and derive the prices for equity, mezzanine and senior debt tranches.

IV. Pricing of Tranches

I am structuring derivative securities with different default risk from the underlying

collateral pool Pn. I create an equity tranche, a mezzanine, and a senior debt tranche:

Pn
︸︷︷︸

asset pool

= 1{Pn≥N0+N1} (Pn −N0 −N1)
︸ ︷︷ ︸

equity

+ 1{N0≤Pn≤N0+N1}(Pn −N0) + 1{Pn≥N0+N1}N1
︸ ︷︷ ︸

mezzanine

+N0 − 1{Pn<N0} (N0 − Pn)
︸ ︷︷ ︸

senior debt

, (3)
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where N0 > 0 is the notional amount of outstanding senior debt and N1 > 0 the par amount

of outstanding mezzanine claims. According to Modigliani and Miller (1958), the value of

all three liability claims must equal the asset value independent of the notional amounts N0

and N1. In the following, I will keep the price of the asset pool constant for any n. Thus,

if the price of any tranche rises due to n then the portfolio price of the remaining tranches

must fall. Further, equity can be written as the payoff of a long call, max {Pn −N0 −N1, 0},

the payoff of the mezzanine tranche as the payoff of a risk-free bond plus a short put and

a long put, N1 − max {N0 +N1 − Pn, 0} + max {N0 − Pn, 0}, and the payoff of the senior

debt tranche as the payout of a risk-free bond plus a short put, N0 −max {N0 − Pn, 0}. It

is crucial to note that mezzanine and equity securities are – unlike senior debt – leveraged

securities.

Due to the multivariate Gaussian distribution of cash flows, the default probabilities or

hitting probabilities of the mezzanine and senior debt tranche are given by Φ (−DD1) and

Φ (−DD0), where DD0 and DD1 are the so-called distances to default:

DD0 =
µ−N0

σPn

, and DD1 =
µ−N0 −N1

σPn

.

The higher the number of underlying assets n, the lower is the volatility σPn
.

As in Coval, Jurek, and Stafford (2009a) and mentioned above, I will keep the “credit

rating - as proxied by the unconditional default probability - of the securities under consid-

eration fixed” (p. 631). Hence, when I fix the distances to default for any n, I automatically

fix the default probability of the mezzanine and senior tranche and I can write the notional

amounts N0, N1 as a function of σPn
:

N0 = µ−DD0σPn
, N1 = σPn

(DD0 −DD1) , such that N0 +N1 = µ−DD1σPn
. (4)

To obtain the CAPM value of the three structured asset backed securities – equity, mezzanine,

9

https://www2.bc.edu/~chemmanu/phdfincorp/MF891%20papers/MM1958.pdf


senior debt – I first need to derive the mean payoff µX and then the variance contribution

βX for quantifying the systematic risk:

Proposition 2 (Expected payoff µX): For fixed default probabilities, DD0 > DD1 > 0,

the mean payoffs per unit notional with n underlying assets are given by:

µequity,n =
σPn

[φ (DD1) +DD1Φ (DD1)]

1− µ+DD1σPn

< µequity,n−1

µmezz,n = DD0

Φ (−DD1)− Φ (−DD0)

DD0 −DD1

−
φ (DD1)− φ (DD0)

DD0 −DD1

+ Φ(DD1) = µmezz,n−1

µdebt,n =
µΦ (−DD0)− σPn

φ (DD0)

µ−DD0σPn

+ Φ(DD0) > µdebt,n−1,

where Φ(·) is the cdf and φ(·) the pdf of a standard Gaussian variable. The expected payoff

of the debt tranche (as a fraction of notional value) increases with an increasing number of

underlying assets n. The expected payoff of the mezzanine tranche is unaffected by n. The

expected payoff of the equity tranche decreases with increasing n.

Apart from the most junior and the most senior tranche, by fixing default probabilities,

the expected loss rate of any tranche in between is fixed as well. Thus:

Corollary 1: Except for the most junior and the most senior tranches, two CDO

tranches have the same credit rating if and only if they have the same expected loss rate.

But diversification reduces the expected loss rate of senior debt even when default prob-

abilities and the expected loss rate of mezzanine tranches are held constant. However, since

the most senior tranche is typically triple-A rated and the first-loss tranche unrated, a CDO

credit rating can be equivalently interpreted as an ordinal assessment about the default

probability or the expected loss rate. Next, I turn to the CAPM beta:

Proposition 3 (Systematic risk βX): For fixed default probabilities, DD0 > DD1 > 0,

and given asset beta β, the betas of equity, mezzanine and senior debt tranche per unit
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notional with n underlying assets are given by:

βequity,n = β
Φ (DD1)

1− µ+ σPn
DD1

> βequity,n−1

βmezz,n = β
Φ (−DD1)− Φ (−DD0)

σPn
(DD0 −DD1)

> βmezz,n−1

βdebt,n = β
Φ (−DD0)

µ−DD0σPn

< βdebt,n−1.

The beta per unit notional of senior debt decreases with an increasing number of underlying

assets n. The beta per unit notional of a mezzanine tranche increases with increasing n. The

beta per unit notional of equity increases with increasing n.

Note, when the senior debt beta decreases, the beta of the remaining tranches must

increase, since the price of the asset pool and therefore the asset beta β is held constant by

construction. If I further assume a CAPM relation, I can use these two risk statistics for

pricing senior debt, mezzanine and equity securities, i.e., the price of a security g(µX, βX) is

given as a function of µX and βX . Thus, I can combine Proposition 2 and Proposition 3 to

establish the following proposition regarding CAPM pricing of tranches:

Proposition 4 (CAPM price g(µX , βX)): For fixed default probabilities, DD0 > DD1 >

0, and given asset beta β, the CAPM prices per unit notional and n underlying assets of

equity, mezzanine and senior debt are given by:

qequity,n
q0

= µequity,n − βequity,nλ <
qequity,n−1

q0
qmezz,n

q0
= µmezz,n − βmezz,nλ <

qmezz,n−1

q0
qdebt,n
q0

= µdebt,n − βdebt,nλ >
qdebt,n−1

q0
,

where λ is the unit price of covariance risk with the market portfolio M , q0 is the unit

price of the risk-less bond, the other variables are given in Proposition 2 and Proposition
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3. The CAPM price of senior debt increases with increasing number of underlying assets

n, the CAPM price of mezzanine decreases with increasing n and the CAPM price of equity

decreases with an increasing number of underlying assets n.

V. Discussion

Let me discuss two important results in the following: First, I discuss the crucial dif-

ferences to Coval, Jurek, and Stafford (2009a). Second, I demonstrate how to structure an

almost risk-free asset that resembles the government bond.

V.A. Differences to Coval et al.

Coval, Jurek, and Stafford (2009a) “show that losses on the most senior tranches refer-

encing an index of investment grade credit default swaps are largely confined to the worst

economic states, suggesting that they should trade at significantly higher yield spreads than

single-name bonds with identical credit ratings. Surprisingly, this implication turns out

not to be supported by the data” (p. 630). Proposition 4 contradicts this statement since

qdebt,n > qdebt,n−1 for any n ∈ {2, ..., K}, where qdebt,1 is the single-name bond. Senior debt

has the lowest CAPM price when n = 1 and the highest CAPM price when the underlying

asset pool is the market portfolio M , i.e., n = K. Thus, since their proposition is wrong to

begin with, it is hardly surprising that it is not supported by the data.

But I also reject with Proposition 4 the hypothesis of Coval, Jurek, and Stafford (2009a)

regarding the equity tranche: “In other words, because the equity tranche bears the first

losses on the underlying portfolio, it is exposed primarily to diversifiable, idiosyncratic losses.

The benign nature of the underlying risk [...] stands in marked contrast to the tranche’s

12



popular characterization as “toxic waste” ” (p. 660). This interpretation is wrong since

the CAPM equilibrium price of equity falls the more diversified the collateral pool, i.e.,

qequity,n < qequity,n−1 for any n ∈ {2, ..., K}. In case of K = n there is anyway no diversifiable,

idiosyncratic risk left, the underlying asset pool is the market portfolio. Thus, the equity

tranche has the lowest CAPM price and is therefore “most toxic” when the underlying

collateral pool is M . Junior not senior bonds are economic catastrophe bonds!

The problem with the conclusions of Coval, Jurek, and Stafford (2009a) is that they ana-

lyze the risk locally but interpret it globally. They show that by fixing default probabilities,

the so-called risk-neutral default probabilities increase with increasing n. I can replicate their

finding within my setting by calculating the price of a digital option or a digital tranche that

pays out one unit if the portfolio payoff Pn is greater than N0 or N1 and zero else:

Proposition 5 (Proposition of Coval, Jurek, and Stafford (2009a)): For fixed physical

default probabilities, DD0 > DD1 > 0, and given asset beta β, the CAPM prices of digital

tranches are given by:

qdigital mezz,n

q0
= Φ(DD1)− λ

β

σPn

φ (DD1) <
qdigital mezz,n−1

q0

qdigital debt,n
q0

= Φ(DD0)− λ
β

σPn

φ (DD0) <
qdigital debt,n−1

q0
,

such that

βdigital mezz,n =
β

σPn

φ (DD1) >
β

σPn

φ (DD0) = βdigital debt,n.

The prices of digital tranches decrease with an increasing number of underlying assets n.

The digital mezzanine tranche has always the lower price than the digital senior tranche.

But importantly, the price of a digital tranche is not the price of the whole tranche but

simply the price of a binary bet against low values of Pn (and this bet does not change the
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Figure I: State Contingent Payoff of Digital Tranche and Senior Debt
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I replicate Figure 1 and 2 in Coval, Jurek, and Stafford (2009a) within a two-moment CAPM.

The state of the economy is described by the market portfolio M ∼ N(0.9, 0.17692) with

K = 1, 000 assets. For any n, all digital tranches and senior debt securities have a default

probability of 1% and the asset pool Pn has a mean of 0.9 and variance σ2
Pn

= 1
n
σ2 + n−1

n
ρσ2

with ρ = 0.5, σ = 0.25. Unlike digital tranches (upper panel), senior debt securities (lower

panel) have significant recovery values in bad states, i.e., for realization of M smaller than

0.4886 (default with n = 1, 000).
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composition of the market portfolio). The higher n the more this lottery corresponds to a

digital gamble against bad states, in particular when the asset pool is the market portfolio,

i.e., n = K, as illustrated in the upper panel of Figure I. By definition, a digital tranche has

no recovery value in case of default, but senior debt has a recovery value as illustrated in

the lower panel of Figure I.

In effect, Coval, Jurek, and Stafford (2009a) make only a marginal or local consideration.

That is, they only consider the beta of the first unit one potentially loses by investing into a

certain tranche, but to obtain the beta of the whole tranche, I have to average over all units

at risk. That is, I have to make a global consideration:

1

N

∫ b

a

β

σn

φ

(

−
µ − ξ

σPn

)

︸ ︷︷ ︸

beta of digital tranche

dξ =
1

N
β

[

Φ

(

−
µ− b

σPn

)

− Φ

(

−
µ− a

σPn

)]

︸ ︷︷ ︸

average beta of series of digital tranches

, (5)

where N is the notional amount, a and b are the attachment and detachment point. If I

impute a = N0, b = N0 + N1, N = N1 into Equation 5, I have an alternative derivation of

the beta of the mezzanine tranche βmezz,n from Proposition 3 in the form of an average of

digital betas. Similarly, with a = N0 + N1, b = ∞, N = 1 − N0 − N1 I obtain the equity

beta βequity,n, and the senior debt beta βdebt,n is obtained with a = −∞, b = N0, N = N0.

Unlike a single digital tranche, senior debt consists of a series of digital tranches and both

the expected loss given default and the averaged beta decrease with an increasing asset pool

resulting in a higher price. This finding is economically relevant since senior debt is normally

the largest funding source. The most senior tranche in a structured ABS transaction is often

called super senior tranche and is by construction unleveraged and essentially the largest slice

of a CDO. Even in the empirical analysis of Coval, Jurek, and Stafford (2009a) regarding

CDX tranches, the most senior tranche covers a majority of 70% of the underlying notional

amount in the asset pool. So, I want to rectify the central conclusion of Coval et al.

15



“Consequently, despite having an unaltered credit rating, the [most senior] securi-

ties in the sequence offer progressively less [more] protection against economic

catastrophe. In order to bear this increased [decreased] level of systematic

risk, the marginal investor demands additional [less] compensation, causing

the tranche price [per unit notional] to fall [rise].”

Coval, Jurek, and Stafford (2009a), (p. 633)

The original statement holds true for all leveraged securities. However, Coval et al.

interpret their finding for the most senior tranche:

“Investors in senior tranches of collateralized debt obligations bear enormous sys-

tematic risk. [...] The key to understanding the market’s dramatic rise and

fall is to recognize [...] their ability to concentrate systematic risks in the most

senior tranches.”

Coval, Jurek, and Stafford (2009b), (p. 18/19)

V.B. A Close Substitute for the Risk-less Asset

As derived above, the systematic risk of a mezzanine tranche is higher than that of a

senior tranche, all the more the more diversified the collateral pool. The systematic risk can

therefore not be concentrated in the most senior tranches. This theoretical finding is also

very intuitive, in every bad state of the economy that the senior debt tranche is hit, the

mezzanine tranche is wiped out as well but not the other way around. The more diversified

the underlying collateral pool the better is the protection but the higher is the price. To

boot, from Proposition 4 you can immediately derive that a debt security with significant

over-collateralization (similar to a covered bond or repo) resembles the default-free bond:
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Corollary 2 (Structuring a close substitute for the risk-free asset): The lower the

default probability, DD0 → ∞, the closer is the price of the senior debt tranche to the price

of the risk-free asset, qdebt,n−1 > qdebt,n → q0 for any n ∈ {2, ..., K}.

Hence, the senior tranche based on K assets (market portfolio) and long distance to

default DD0 fails to deliver in the worst states (huge market losses), yet its price qdebt,K is

nonetheless close to the price q0 of the risk-free bond (and closer than the price of a single-

name bond qdebt,1 with the same distance to default DD0). Thus, the following statement

of Coval, Jurek, and Stafford (2009b) is in my view only half-correct: “Securities that fail

to deliver their promised payments in the “worst” economic states will have low values,

because these are precisely the states where a dollar is most valuable” (p. 628). Yes, senior

debt defaults in the worst states but if and only if mezzanine and equity have experienced

a complete loss. Only the risk-free bond offers better insurance against the worst states at

a marginally higher price. But after all, the risk-free asset is also a scarce resource. In my

model there is not even an explicit risk-free asset, one has to structure an approximative

risk-free security via Proposition 2, qdebt,K is de facto the price of the risk-free asset, q0 ≈

qdebt,K > qdebt,1. I mean, what, exactly, would they propose to hold instead? They could

invest into a single-name bond and buy protection, but this insurance is also exposed to

systematic risk through counterparty risk from the insurer. But in the worst economic

states even “safe haven” counterparties such as Switzerland or the US might fail.

VI. Conclusion

This paper demonstrates that the most senior bond of a structured finance transaction

offers better protection against bad states of the economy relative to equally rated single-

name corporate bonds (given the same underlying asset beta). In my view, this important
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observation has not been well articulated neither in the academic nor practitioner literature.

On the contrary, I show that the conclusion of Coval, Jurek, and Stafford (2009b) – nota

bene in one of Economic’s most prestigious outlets – about the market for structured finance

obligations, “the key to understanding the market’s dramatic rise and fall is to recognize [...]

their ability to concentrate systematic risks in the most senior tranches,” (p. 19) is wrong.

Coval, Jurek, and Stafford (2009a) also state that “because the equity tranche bears the

first losses on the underlying portfolio, it is exposed primarily to diversifiable, idiosyncratic

losses” (p. 660). In this paper I prove the opposite: Junior and not senior bonds are economic

catastrophe bonds.

In fact, given a constant asset beta and fixed default risk (in the sense of a constant proba-

bility of full repayment of nominal amount and interest), diversification moves the systematic

risk out of the senior debt tranche into subordinated tranches. Due to diversification, the

beta and the expected loss rate of the most senior tranche become so low that it can even be

considered a close substitute for a government bond or the default-free bond, respectively.

Because most senior tranches are virtually free of risk, they are correctly triple-A rated.

However, the systematic risk of all but the most senior tranche – in other words all leveraged

tranches – can be considerably higher than that of an equally rated senior (and therefore

unleveraged) single-name bond. Leverage and not diversification powers systematic risk!

Since the unleveraged tranche is typically the largest slice of a structured finance transac-

tion, it is key to make public the risk characteristics of the different tranches to the average

investor in order to revive the private securitization market. Otherwise, some investors re-

main reluctant to invest even in low-risk securities, which in fact closely resemble government

bonds, that they falsely associate now with economic catastrophe bonds caused by some mis-

conceptions in the current literature. Finally, for central banks the investments into senior
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ABSs could be a key tool to stimulate credit markets and to increase the money supply.

However, such investments arguably require the broad acceptance of the general public who

still largely thinks all such papers are toxic catastrophe bonds. I hope that my paper can

make a modest contribution to get rid of this erroneous belief.
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Appendix: Proofs

Proof of Proposition 1. The positive Radon-Nikodym derivative Z,

Z = 1− λ
M − µM

σ2
M

,

has mean one and induces the measure change from the real-world probability measure P to

the so-called risk-neutral martingale measure Q. In finance terms, the variable Z is called

the CAPM pricing kernel.3 By the fundamental theorem of asset pricing, the compounded

price pX = qX/q0 of the F -measurable financial derivative X is the expected payoff under

the risk-neutral martingale measure Q:

pX = EQ [X ] = E [Z X ] = E [X ]−
COV [X,M ]

σ2
M

λ = µX − βXλ,

where COV [X,M ] = E [X M ] − E [X ]E [M ] and V [M ] = COV [M,M ] = σ2
M under the

physical measure P.

Proof of Proposition 2. I can write the expected payoff of the asset pool as the linear com-

bination of expected payoff per unit notional amount of equity, mezzanine and senior debt

tranche:

E [Pn] = µ = (1−N0 −N1)µequity,n +N1µmezz,n +N0µdebt,n

= (1− µ+DD1σPn
)µequity,n + σPn

(DD0 −DD1)µmezz,n + (µ−DD0σPn
)µdebt,n,

where the second line follows from (4). The mean payoff of the senior debt tranche can be

3In the two-moment CAPM, the Radon-Nikodym derivative Z = 1 − λ (M − E [M ]) /V [M ] induces the

measure change from the physical probability P to the risk-neutral measure Q such that Q {A} = E [Z 1A]

for any A ∈ F , where 1{·} is the indicator function. Although my Gaussian assumption allows for negative

values of M (and also for negative values of Z), the likelihood is small if E [M ] is close to one and V [M ] ≪ 1.
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separated into two expectation terms:

E
[
1{Pn>N0}

]
N0 = N0Φ (DD0)

E
[
1{Pn≤N0}Pn

]
= µΦ (−DD0)− σPn

φ (DD0) . (6)

The second term is based on the mean of a truncated Gaussian variable. That is, the second

expectation term is the mean payoff given default µ−σPn
φ (DD0) /Φ (−DD0) multiplied by

the default probability Φ (−DD0). The first expectation term is the mean payoff of a digital

tranche, i.e., paying out N0 in case of survival and zero else. For equity and mezzanine I can

proceed equivalently, to obtain the mean payoff per unit notional:

µequity,n =
1

1−N0 −N1

{µ− µΦ (−DD1) + σPn
φ (DD1)− (N0 +N1) Φ (DD1)}

µmezz,n =
1

N1

{(µ−N0) [Φ (−DD1)− Φ (−DD0)]− σPn
[φ (DD1)− φ (DD0)] +N1Φ (DD1)}

µdebt,n =
1

N0

{µΦ (−DD0)− σPn
φ (DD0) +N0Φ (DD0)} .

Since the notional amounts N0, N1 can be expressed in terms of DD0, DD1, and σPn
when

default probabilities are fixed as derived in (4), I obtain the desired terms for µequity,n, µmezz,n,

and µdebt,n.

The mean of the mezzanine tranche µmezz,n is unaffected by σPn
. By assumption 0 < µ < 1

and since DD0Φ (−DD0) − φ (DD0) < 0 for any DD0 ∈ R, the marginal effect of σPn
on

µequity,n, µdebt,n are given as follows:

∂µequity,n

∂σPn

= (1− µ)
φ(DD1) +DD1Φ(DD1)

[1− µ+DD1σPn
]2

> 0 ⇒
∂µequity,n

∂σPn

∂σPn

∂n
=

∂µequity,n

∂n
< 0

∂µdebt,n

∂σPn

= µ
DD0Φ (−DD0)− φ (DD0)

[µ−DD0σPn
]2

< 0 ⇒
∂µdebt,n

∂σPn

∂σPn

∂n
=

∂µdebt,n

∂n
> 0.

The mean payoff per unit notional invested into the equity (debt) tranche decreases (in-

creases) with increasing n since ∂σPn
/∂n < 0. The mean payoff of the mezzanine tranche is

independent of n.
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Proof of Proposition 3. The beta of the asset pool is one and can be written as the linear

combination of the betas per unit notional of equity, mezzanine and senior debt tranche:

β = (1−N0 −N1)βequity,n +N1βmezzanine,n +N0βdebt,n

= (1− µ+DD1σPn
)βequity,n + σPn

(DD0 −DD1) βmezz,n + (µ−DD0σPn
) βdebt,n,

where the second line follows from (4). To obtain the beta of the equity tranche, I first

calculate the covariance between the payoff 1{Pn≥N0+N1}(Pn −N0 −N1) and M :

COV
[
1{Pn≥N0+N1} (Pn −N0 −N1) ,M

]
= E

[
1{Pn≥N0+N1} (Pn −N0 −N1) (M − µM)

]

=
σ2
M

σ2
Pn

E
[
1{Pn≥N0+N1} (Pn −N0 −N1) (Pn − µ)

]

= σ2
MΦ (DD1) .

The first equality applies the covariance definition. The second equality follows from a linear

projection of M onto Pn with a stochastically independent residual Gaussian variable ǫ:

(M − µM) =
σ2
M

σ2
Pn

(Pn − µ) + ǫ, with E [ǫ Pn] = 0, ǫ ∼ N
(

0, σ2
M

(

1−
σ2

M

σ2

Pn

))

. (7)

For the third equality I resort to the mean and the variance of a truncated Gaussian variable,

in particular, the integral in (6) and the following definite integral of a Gaussian function:

E
[
1{Pn≤N0}P

2
n

]
=

(
µ2 + σ2

Pn

)
Φ (−DD0)− σPn

(µ+N0)φ (DD0) .

Therefore,

βequity,n = β
Φ (DD1)

1−N0 −N1

= β
Φ (DD1)

1 − µ+ σPn
DD1

,

where the second equality follows from (4). I can proceed equivalently to obtain the betas

of mezzanine and senior debt per unit notional.
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Proof of Proposition 5. I first compute the beta of a digital option that pays out one unit in

case Pn < N0 and zero else:

βdigital debt,n =
COV

[
1{Pn≥N0},M

]

σ2
M

=
1

σ2
M

E
[
1{Pn≥N0} (M − µM)

]
=

β

σ2
Pn

E
[
1{Pn≥N0} (Pn − µ)

]
=

β

σPn

φ (DD0) .

The third equality follows from (7), the fourth from (6), so that the price qdigital,N0,n is given

by:

Q {Pn ≥ N0} =
qdigital debt,n

q0
= µdigital debt,n − βdigital debt,nλ = Φ(DD0)− λ

β

σPn

φ (DD0) .

Since the standard deviation σPn
is decreasing in n but the physical survival probability

Φ (DD0) remains fixed for any n, the risk-neutral default probability increases or the risk-

neutral survival probability decreases, respectively. The same argument can be applied to

the default probability of the mezzanine tranche with notional amount N1.
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